HABA ALUMINIUM PLATES OVERVIEW

PRODUCT OVERVIEW

G-AlMg3 Planalu N Alu6082 G-Alu25 Planalu G G-Alu340 G-Alu25 eloxtop Alu28 Alu50 McBasic Alu35 Alu7075

MECHANICAL ENGINEERING
VEHICLE CONSTRUCTION
PLANT CONSTRUCTION
APPARATUS CONSTRUCTION
JIG MANUFACTURING
TOOLMAKING

PRODUCT OVERVIEW

ALUMINIUM PLATES

HABA product designation	G-AIMg3 milled	G-Alu25 milled	G-Alu25 sawn	G-Alu25 eloxtop	McBasic	Alu28	Alu35	Planalu N	Planalu G
Designation	similar EN AW-5754 AlMg3	similar EN AW-5083 AlMg4.5Mn0.7	similar EN AW-5083 AlMg4.5Mn0.7	similar EN AW-5083 AlMg4.5Mn0.7	similar EN AW-5083 AlMg4.5Mn0.7	EN AW-5083 EN AW-AIMg4.5Mn0.7	EN AW-5083 EN AW-AIMg4.5Mn0.7	EN AW-5083 EN AW-AIMg4.5Mn0.7	EN AW-5083 EN AW-AlMg4.5Mn0.7
Material no.	3.3535 (casting plate)	3.3547 (casting plate)	3.3547 (casting plate)	3.3547 (casting plate)	3.3547 (casting plate)	3.3547	3.3547	3.3547	3.3547
State	homogenise, O3	homogenise, O3	homogenise, O3	homogenise, O3	homogenise, O3	H111	H111 / low-tension annealed	H111	H111 / low-tension annealed
Surface	finely milled	finely milled	cut by band saw	finely milled	finely milled	finely milled	grinded	as-rolled	as-rolled
HABA standard tolerance									
Surface tolerance	Ra0.8 (N6)	Ra0.8 (N6)	Ra25 (N12)	Ra0.8 (N6)	Ra0.8 (N6)	Ra0.8 (N6)	Ra1.6 (N7)	as-rolled	as-rolled
Thickness tolerance (mm)	+/-0.1	+/-0.05	+1/0	+/-0.05	+/-0.1	+/-0.1	+0.2/0	EN 485-3/4	EN 485-3/4
Parallelism (mm)	≤0.1	≤0.05	0.3	≤0.05	-	≤0.1	≤0.1	≤0.2/100	≤0.2/100
Evenness (mm)	≤0.2	≤0.2	0.3	≤0.2	≤0.4	≤0.2	≤0.2	EN 485-3/4	EN 485-3/4
Length and width tolerance (mm)	+0.8/+0.3	+0.8/+0.3	+0.8/+0.3	+0.8/+0.3	+1/0	+0.8/+0.3	+0.8/+0.3	+0.8/+0.3	+0.8/+0.3
Customer-specific tolerance	within a tolerance field	within a tolerance field	within a tolerance field	within a tolerance field	-	within a tolerance field of 0.4	within a tolerance field of 0.4	within a tolerance field of 0.4	within a tolerance field of 0.4
	of 0.4 mm	of 0.4 mm	of 0.4 mm	of 0.4 mm		mm	mm	mm	mm
Mechanical properties									
Machinability	very good	very good	very good	very good	good	good	good	good	good
Dimensional stability	very good	very good	very good	very good	good	good	very good	good	very good
Tensile strength R _m (N / mm²)	190-230	≥250	≥250	250 - 290	≥250	255-350	255-350	255-350	255-350
		≥115	≥115	115-135		≥105	≥105		≥105
Elastic limit R _{p.0.2} (N / mm²)	≥80				≥115		≥105	≥105	
Breaking strain A ₅	6-10 %	6-10 %	6-10 %	>12 %	6-10 %	≥12 %		≥12 %	≥12 %
Brinell hardness (HBS)	~50	≥70	≥70	70 - 75	≥70	≥70	≥70	≥70	≥70
Weldability (WIG, MIG)	good	good	good	good	good	good	good	good	good
Behaviour by anodisation									
Decorative anodising	very good	moderate	moderate	good	moderate	moderate	moderate	moderate	moderate
Protective anodising Use in contact with food	very good yes	very good yes	very good	very good yes	very good	very good	very good	very good	very good
	yes	yes	yes	yes	yes	yes	yes	yes	yes
Resistance Weatherproofness	very good	very good	very good	very good	very good	very good	very good	very good	very good
Seawater resistance						very good	1		very good very good
	very good	very good	very good	very good	very good	very good	very good	very good	very good
Chemical composition									
Magnesium Mg	2.6-3.6 %	4.0-4.9 %	4.0-4.9 %	4.0-4.9 %	4.0-4.9 %	4.0-4.9 %	4.0-4.9 %	4.0-4.9 %	4.0-4.9 %
Manganese Mn	≤0.50 %	0.4-1.0 %	0.4-1.0 %	0.4-1.0 %	0.4-1.0 %	0.4-1.0 %	0.4-1.0 %	0.4-1.0 %	0.4-1.0 %
Chromium Cr	≤0.30 %	0.05-0.25 %	0.05-0.25 %	0.05-0.25 %	0.05-0.25 %	0.05-0.25 %	0.05-0.25 %	0.05-0.25 %	0.05-0.25 %
Iron Fe		≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %
Silicium Si	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %	≤0.40 %
Cooper Cu	≤0.10 %	≤0.10 %	≤0.10 %	≤0.10 %	≤0.10 %	≤0.10 %	≤0.10 %	≤0.10 %	≤0.10 %
Titanium Ti	≤0.15 %	≤0.15 %	≤0.15 %	≤0.15 %	≤0.15 %	≤0.15 %	≤0.15 %	≤0.15 %	≤0.15 %
Zinc Zn	≤0.20 %	≤0.25 %	≤0.25 %	≤0.25 %	≤0.25 %	≤0.25 %	≤0.25 %	≤0.25 %	≤0.25 %
Other elements together / individually	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %	≤0.15 % / 0.05 %
Comments / comparisons	G-AIMg3 is a naturally	G-Alu25 is a naturally har-	G-Alu25 is a naturally har-	G-Alu25 eloxtop is a naturally	McBasic is a naturally harde-	Alu28 is an annealed, natu-	Alu35 is a low-tension anne-	Planalu is a naturally hard	Planalu is a naturally hard
Comments / Compansons	hardened aluminium casting plate which fulfils the most demanding machinability and dimensional stability requirements. The special manufacturing process is carried out according to strict HABA factory standards. These standards apply to all process steps and are a guarantee for the homogeneous structure. Together with the narrow alloy setting, this unique character gives our evolution the excellent	dened aluminium casting plate which fulfils the most demanding machinability and dimensional stability requirements. The special casting process is the guarantee for the homogenous join and the vacuum tightness.	dened aluminium casting plate which fulfils the most demanding machinability and dimensional stability requirements. The special casting process is the guarantee for the homogenous join and the vacuum tightness.	hard cast aluminium plate that meets the highest requirments for machinability and dimensional stability. The special manufacturing process is carried out according to strict HABA factory standards. These standards apply to all process steps and are a guarantee for the excellent guarantee for the excellent properties, homogeneous microstructure as well as gas and vacuum tightness. The high microstructure quality ensures good results in	ned casting plate with good machinability and dimensional stability. Ideally suited for price- sensitive products in larger quantities.	rally hard rolled plate with a	aled rolled plate with a grin- ded surface. The plates have excellent parallelism, are easy to machine and extremely dimensionally stable.	rolled plate with good machinability and good dimensional stability. It is easy to weld, is extremely corrosion-resistant and suitable for metallic coatings.	rolled plate with good machinability and good dimensiona stability. It is easy to weld, is extremely corrosion-resistant and suitable for metallic coatings. Planalu G is additionally lowtension annealed.

PRODUCT OVERVIEW

ALUMINIUM PLATES

HABA product designation	Alu6082 milled	Alu6082 as-rolled	G-Alu340 milled
Designation	EN AW-6082	EN AW-6082	EN AW-7021
	EN AW-AlSi1MgMn	EN AW-AlSi1MgMn	AlZn5.5Mg1.5
Material no.	3.2315	3.2315	-
State	T6/T651	T6/T651	casting plate, T6
Surface	finely milled	as-rolled	finely milled
HABA standard tolerance			
Surface tolerance	Ra0.8 (N6)	as-rolled	Ra0.8 (N6)
Thickness tolerance (mm)	+/-0.1	EN 485-3/4	+/-0.1
Parallelism (mm)	≤0.05	≤0.2/100	≤0.05
Evenness (mm)	≤0.2	≤0.5	≤0.2
Length and width tolerance (mm)	+0.8/+0.3	+0.8/+0.3	+0.8/+0.3
Customer-specific tolerance	within a tolerance field of 0.4mm	within a tolerance field of 0.4mm	within a tolerance field of 0.4mm
Mechanical properties			
Machinability	good	good	very good
Dimensional stability	medium-good	medium-good	very good
Tensile strength R _m (N / mm²)	275-350	275-350	≥340
Elastic limit R _{p.0.2} (N / mm²)	240-310	240-310	≥300
Breaking strain A _s	6-10 %	6-10 %	≥3 %
Brinell hardness (HBS)	84-104	84-104	≥110
Weldability (WIG, MIG)	very good	very good	very good
Behaviour by anodisation			
Decorative anodising	good	good	good
Protective anodising	very good	very good	good
Use in contact with food	yes	yes	no
Resistance			
Weatherproofness	very good	very good	good
Seawater resistance	very good	very good	good
Chemical composition			
Magnesium Mg	0.6-1.2 %	0.6-1.2 %	1.2-1.8 %
Manganese Mn	0.4-1.0 %	0.4-1.0 %	0.1 %
Chromium Cr	≤0.25 %	≤0.25 %	0.05 %
Iron Fe	≤0.5 %	≤0.5 %	0.4 %
Silicium Si	0.7-1.3 %	0.7-1.3 %	0.25 %
Cooper Cu	≤0.1 %	≤0.1 %	0.25 %
Titanium	≤0.1 %	≤0.1 %	0.1 %
Zinc Zn	≤0.2 %	≤0.2 %	5.0-6.0 %
Other elements together / individually	≤0.15 % / 0.15 %	≤0.15 % / 0.15 %	≤0.15 % / 0.05 %
Comments / comparisons	Alu6082 is an artificially aged rolled plate with a precisely milled or rolled surface. The material is very easy to machine and has medium to good dimensional stability. It has outstanding corrosion resistance against weather and seawater.	Alu6082 is an artificially aged rolled plate with a precisely milled or rolled surface. The material is very easy to machine and has medium to good dimensional stability. It has outstanding corrosion resistance against weather and seawater.	G-Alu340 is an aluminium casting plate with significantly higher dimensional stability than naturally hardened casting plates. We achieve the persistent equal stregth with a multi-stage process of heat-treating and natural aging. The material stands out for its excellent machinability and great stability.

low-tension annealed rolled plate with high very high tensility and hardness. The material very high tensility and hardness. The material	N AW-AlZn5Mg3Cu 3.4345	EN AW-AlZnMgCu1.5	EN AW-AlZnMgCu1.5		
EN AW-AIZn5Mg3Cu	3.4345		EN AW-AlZnMgCu1.5		
3.4345	3.4345				
T8/T651 T6/T651 T6/T651 milled milled as-rolled of 0.4mm as-rolled as-rolled as-rolled of 0.4mm within a tolerance field of 0.4mm within a tolerance		1.3.4365	3 4365		
Ra0.8 (N6)					
Ra0.8 (N6)	nillad	millad	an rolled		
+0.20	illeu	milied	as-rolled		
+0.20	Ra0.8 (N6)	Ra0.8 (N6)	as-rolled		
\$0.1					
≤0.2 ±0.8/+0.3 ±0.8/+0.3 ±0.8/+0.3 ±0.8/+0.3 ±0.8/+0.3 within a tolerance field of 0.4mm with a tolerance field of 0.4mm within a tolerance field of 0.4mm within a tolerance field of 0.4mm within a tolerance field of 0.4					
+0.8/+0.3 within a tolerance field of 0.4mm within a tolerance field of 0.4mo of 0.400 tologo of 0.400 tolo					
within a tolerance field of 0.4mm within a tolerance field of 0.4mm within a tolerance field of 0.4mm very good very good very good good moderate moderate <50					
very good very good very good good medium-good moderate <50					
good medium-good moderate <50	THE REPORT OF THE PROPERTY OF	Within a tolerance field of c4ffiff	Within a tolerance held of 0.4Hilli		
good medium-good moderate <50	ery good	very good	very good		
<50					
≥450 ≥430 ≥410 ≥500 ≥480-500 ≥400 ≥500 ≥480-500 ≥400 ≥370 ≥350 ≥330 ≥450 ≥390-430 ≥280 ≥450 ≥390-430 ≥280 ≥7% ≥5% ≥3% 3-8% ≥2%		<50 50-100 >100	<50 50-100 >100		
≥370 ≥350 ≥330 ≥450 ≥390-430 ≥280 ≥450 ≥390-430 ≥280 ≥2 % </td <td>±450 ≥430 ≥410</td> <td>>500 >480-500 >400</td> <td>≥500 ≥480-500 ≥400</td>	±450 ≥430 ≥410	>500 >480-500 >400	≥500 ≥480-500 ≥400		
≥125 ≥110 ≥100 ≥140 ≥130 ≥120 moderate moderate moderate moderate bad or unsuitable good good good good no no no moderate moderate moderate moderate moderate moderate 2.6-3.7 % 2.1-2.9 % ≤0.3 % 0.1-0.4 % ≤0.3 % ≤0.3 % <0.5 %					
≥125 ≥110 ≥100 ≥140 ≥130 ≥120 moderate moderate moderate moderate bad or unsuitable good good good good no no no moderate moderate moderate moderate moderate moderate 2.6-3.7 % 2.1-2.9 % ≤0.3 % 0.1-0.4 % ≤0.3 % ≤0.3 % <0.5 %					
moderate moderate good good no no moderate moderate moderate moderate moderate moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % 0.1-0.3 % ≤0.3 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % 0.5-1.0 % ≤0.4 % ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) 4.3-5.2 % 5.1-6.1 % ≤0.15 % / ≤0.15 % ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material					
good good good no no no moderate moderate moderate moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % ≤0.3 % 0.1-0.3 % ≤0.3 % ≤0.3 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % ≤0.4 % 0.5-1.0 % 1.2-2.0 % ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr ≤0.25 %) 4.3-5.2 % 5.1-6.1 % ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material					
good good good no no no moderate moderate moderate moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % ≤0.3 % 0.1-0.3 % ≤0.3 % ≤0.3 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % ≤0.4 % 0.5-1.0 % 1.2-2.0 % ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr ≤0.25 %) 4.3-5.2 % 5.1-6.1 % ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material					
moderate moderate moderate moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % ≤0.3 % 0.1-0.3 % ≤0.3 % 0.18-0.28 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % ≤0.4 % 0.5-1.0 % 1.2-2.0 % ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr ≤0.25 %) 4.3-5.2 % 5.1-6.1 % ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material very high tensility and hardness. The materi	noderate	bad or unsuitable	bad or unsuitable		
moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % ≤0.3 % 0.1-0.3 % ≤0.3 % 0.18-0.28 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % ≤0.4 % 0.5-1.0 % 1.2-2.0 % ≤0.4 % ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr ≤0.25 %) 4.3-5.2 % 5.1-6.1 % ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material very high tensility and hardness. The material	jood	good	good		
moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % ≤0.3 % 0.1-0.3 % 0.18-0.28 % 0.18-0.28 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % ≤0.4 % 0.5-1.0 % ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material Alu7075 is an artificially aged rolled plate very high tensility and hardness. The material	10	no	no		
moderate moderate moderate 2.6-3.7 % 2.1-2.9 % 2.1-2.9 % 0.1-0.4 % ≤0.3 % ≤0.3 % 0.1-0.3 % 0.18-0.28 % 0.18-0.28 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.5 % ≤0.4 % ≤0.4 % 0.5-1.0 % ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.2 % (Ti+Zr) ≤0.2 % (Ti+Zr ≤0.25 %) ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material Alu7075 is an artificially aged rolled plate very high tensility and hardness. The material					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	noderate	moderate	moderate		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	noderate	moderate	moderate		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6-3.7 %	2.1-2.9 %	2.1-2.9 %		
≤0.5% $≤0.5%$ $≤0.4%$ $≤0.4%$ $≤0.4%$ $≤0.4%$ $0.5-1.0%$ $1.2-2.0%$ $≤0.2%$ (Ti+Zr) $≤0.2%$ (Ti+Zr) $≤0.2%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ $≤0.1%$ Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material	.1-0.4 %		≤0.3 %		
≤0.5 % $≤0.5 % $ $≤0.4 % $ $0.5-1.0 %$ $≤0.2 % (Ti+Zr)$ $≤0.2 % (Ti+$.1-0.3 %	0.18-0.28 %	0.18-0.28 %		
≤0.5% $≤0.4%$ $≤0.4%$ $1.2-2.0%$ $1.2-2.0%$ $≤0.2%$ (Ti+Zr) $≤0.2%$ (Ti+Zr) $≤0.2%$ $≤0.2%$ (Ti+Zr) $≤0.2%$ $≤0.2%$ (Ti+Zr $≤0.25%$) $≤0.2%$ (Ti+Zr $≤0.25%$) $≤0.15%$ $≤0.15%$ $≤0.15%$ $≤0.15%$ $≤0.15%$ $≤0.15%$ $≤0.15%$ Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high	0.5 %				
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
≤0.15 % / ≤0.15 % ≤0.15 % / ≤0.15 % ≤0.15 % / ≤0.15 % Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high Alu7075 is an artificially aged rolled plate with very high tensility and hardness. The material very high tensility and hardness very h					
Alu50 is an artificially aged and additionally low-tension annealed rolled plate with high low-tension annealed rolled plate with high very high tensility and hardness. The material very high tensility and hardness.	.3-3.2 70				
low-tension annealed rolled plate with high very high tensility and hardness. The material very high tensility and hardness. The material	Alu50 is an artificially aged and additionally		Alu7075 is an artificially aged rolled plate with		
			very high tensility and hardness. The material		
	ensility and good machinability. The material	can be easily machined. Slight bending is	can be easily machined. Slight bending is		
also has a great hardness and a very good possible.					
dimensional stability.					

HABA STORAGE FORMATS

ALUMINIUM PLATES

	G-AIMg3	G-A	Alu25	G-Alu25 eloxtop	McBasic	Alu28	Alu35
Standard format in mm	1520 x 3020	1560	x 3000	1520 x 3020	2160x 4000	1520 x 3020	1003 x 3020
Max format in mm	1520 x 4030	2160	x 4000	1520 x 4030		2010 x 3020	2010 x 3020
Thickness in mm	finely milled	finely milled	cut by band saw	finely milled	finely milled	finely milled	grinded
3		•		•			
4		•		•			
5	•	•		•		•	•
6	•	•		•		•	•
7		•		•			
8	•	•		•		•	•
9		•		•			
10	•	•		•		•	•
11		•		•			
12	•	•		•		•	•
13		•					
14		•					
15	•	•		•	0	•	•
16		•					
17		•					
18		•					
19		•					
20	•	•		•	0	•	•
21		•	+1/0 •				
22	•	•					
23		•					
24		•					
25	•	•		•	0	•	•
26		•	+1/0				
27	•	•					
28	•	•					
29		•					
30	•	30 • / 33 •	31 +1/0 •	•	0	•	•
35	•	•		•	0	•	•
37	•	38 •	36 +1/0 ●				
40	•	•	41 +1/0 •	•	0	•	•
45		•				•	•
46			•				
50	•	•	51 ^{+1/0} •	•	0	•	•
60	•	•	61 +1/0 •	•	0	•	•
70	•	•	71 +1/0 •				
80	•	•	81 +1/0 •				•
90	•	•	91 +1/0 •				
100	•	•	101 +1/0 •				
110		•	111 +1/0 •				
120		•	121 +1/0 •				
130		•					
140		•					
150		•					
160							

	Planalu N	Planalu G	Alue	6082	G-Alu340	Alu50	Alu7075	Alu7075
Standard format in mm	1520 x 3020	1520 x 3020	1520 >	x 3020	1545 x 3040	1500 x 3000	1520 x 3020	1520 x 3020
Max format in mm								
Thickness in mm	as-rolled	as-rolled	finely milled	as-rolled	finely milled	finely milled	finely milled	as-rolled
3								
4								
5	•	•		•				
6	•	•	•	•	•	•		
7								
8	•	•	•	•	•	•		
9								
10	•	•	•	•	•	•	•	•
11								
12	•	•	•	•	•	•	•	•
13								
14								
15	•	•	•	•	•	•	•	•
16								
17								
18								
19	_	_	_	_				
20	•	•	•	•	•	•	•	•
21								
22								
23								
25	•	•	•	•	•	•	•	•
25								
27								
28								
29				l				
30	•	•	•	•	•	•	•	•
35	•	•	•	•	•	•		•
37		-		-	-	-		-
40	•	•	•	•	•	•	•	•
45	•	•		•	•	•		•
46								
50	•	•	•	•	•	•	•	•
60	•	•	•	•	•	•	•	•
70		•		•	•	•		•
80		•		•	•	•		•
90		•		•	•	•		•
100		•		•	•	•		•
110		•		•	-	•		•
120		•		•	-	•		•
130		•		•		•		•
140		•		•		•		•
150		•		•		•		•

¹⁻³ days delivery5 days delivery

SWITZERLAND

HABA AG – Administration

Gewerbestrasse 6 6330 Cham / ZG Tel. +41 41 748 88 88 info@haba.ch www.haba.ch

HABA AG - Production

Speckstrasse 19 8330 Pfäffikon / ZH Tel. +41 44 950 40 00 info@haba.ch

GERMANY

HABA PlattenService GmbH

Ohmstrasse 9 71083 Herrenberg Tel. +49 7032 9757 0 info@haba-gmbh.de www.haba-gmbh.de

ITALY

HABA ServizioPiastre s.r.l

Via Emilia 27/29 24052 Azzano San Paolo (BG) Tel. +39 035 899 190 info@haba.it

AUSTRIA

HABA GmbH

IZ NO-Süd, Straße 2a Objekt M40 2355 Wiener Neudorf Tel. +43 2236 388 08-0 info@haba-gmbh.at www.haba-gmbh.at

CZECH REPUBLIC

HABAsro

Ulice HABA, č.p. 553 696 66 Sudoměřice Tel. +420 515 225 121 info@haba-sro.cz

Aerospace certified according to EN 9100

